三相电表大电流正转小电流反转?
一、三相电表大电流正转小电流反转?
如果确定互感器的二次线没的接错了话有以下三种情况:
1、一次线路接反:一次线路必须从P1穿向P2.
2、电表有问题:校验电表是否正常,如果电能表被拆过.没有安装正确(电流电压线圈没有装正)也有可能反转.
3、用电情况,三相四线制电表,在接线正确且电能表没有问题的情况下,用单相电焊机接380V(接两根火线)使用,经常出现电能表反转情况.
二、交流电流正峰值和有效值?
交流电的峰值是有效值的根号2倍,约1.414倍,而有效值是与直流电相当热效应的值。
三、二极管为什么只让电流正进负出?
当然是可变的只是变化不大。
教科书是的确说了“硅二极管导通时0.7v,锗二极管导通时0.5v'”,但这也只是一个平均取值,并不是完全不变的,在这个平均取值周围变动。
至于为什么是在这个值周围作平均变化,而不是在那个值周围作变化,这个还是物理学的同学来解答吧。但可以假设一个这样的实验来给题主说明一下这个问题:
1、我们有一个220v的电压源;
2、我们有一个瓦级功率的电力二极管,正常工作时压降只有5V;
3、我们有两个电阻,一个215Ω,另一个100Ω。
实验一,首先使用215Ω的电阻来和电压源、二极管串联,我们可以得到电路参数是这样的:二极管压降5V,电阻压降215V,电流215V/215Ω=1A;
实验二:其次使用100Ω的电阻来和电压源、二极管串联,我们可以得到另一组的电路参数:二极管压降5V,电阻压降215V,电流215V/100Ω=2.15A;
实验三:接着将220V的电压源直接连接在二极管的两端,得到的结果将会是:功率远超二极管能承受的功率,烧坏。
好了,实验做完了,下面搬上来二极管的伏安特性图:
这个管子是个信号二极管,正常工作压降小,我用的功率二极管能承受的电压更高些。
看见右边的正偏特性了吗?这条线上升得非常快,也就是说小范围的电压变化就能有很大的电流波动。所以对于我做的试验中,接215Ω和接100Ω来说,电流相差1.15A,对应的横坐标电压,变化其实很小,都在5V附近,所以直接用5V计算就可以了。
但是当我直接加220V电压时,题主可以对着坐标找找这个电流有多大:直接把管子“啪——”地一下烧了,其实在将烧毁而未烧毁的那一瞬间,管子两端压降是220V而不是5V。
所以我们还可以做一个这样的实验:
有一个滑动变阻器,阻值可以从0到∞之间调节。首先将阻值调至∞端,将其与220V的电压源与这个工作时5V的功率二极管串联,然后我们逐渐把阻值从∞调至0,我们会看到什么呢?
一开始时,电流为0,二极管压降为0;随着阻值调小,到了死区电压时,电流开始增加;阻值在调小时,电流快速增加,而二极管压降增加非常缓慢,但都很接近5V;继续减小阻值,到某个临界值时,电流与二极管压降的乘积到了损耗功率允许的最大值,再稍微减小阻值,此时二极管烧毁。
所以结论是:
只要有合适的电阻给二极管分压限流,二极管的阻值会一直保持在一个工作值附近的,但是不是绝对的压降不变。
四、什么是零序电流正序负序电压3i3u?
零序电流和负序电流其实只是人为虚拟的产物。对于一个三相不平衡(不对称)系统(电压或电流),为了分析和计算方便,人为的将这个三相不对称系统分解成“正序分量”,“负序分量”和“零序分量”。这种方法称为“对称分量法”。
负序分量(电压或电流)的特点是:三相大小相同,相差120度,相序和正序相反。
零序分量(电压或电流)的特点是:三相大小相同,三相相位相同。
结论:对于中性点不接地系统,在忽略分布电容电流的情况下,系统发生任何故障都没有零序电流,只有正序和负序电流。(在考虑分布电容电流的情况下,电容电流就是零序电流的性质)
对于中性点直接接地系统,相间短路不存在零序分量,只有接地故障才出现零序分量。
PT开口三角显示的是三相零序电压之和,即3Uo。
零序CT显示的是三相零序电流之和,即3Io。
说的已经详细了,如果你是非电气专业毕业肯定还是不懂,最好找本书慢慢学习。
五、请解释电容电流,零序电流,正序电流,负序电流,不平衡电流之间的关系?
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量.只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零).对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因).当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量).
零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零.在线路与电气设备正常的情况下,各相电流的矢量和等于零,因此,零序电流互感器的二次侧绕组无信号输出,执行元件不动作.当发生接地故障时的各相电流的矢量和不为零,故障电流使零序电流互感器的环形铁芯中产生磁通,零序电流互感器的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的.
零序电流互感器:这是一种利用单相接地故障线路的零序电流值较非故障电路大的特征,用电流互感器取出零序电流信号使继电器动作,实现有选择性跳闸或发出信号的装置.
对于电缆线路,电缆穿过变流器(零序变流器)的铁心为一次绕组,二次绕组绕在铁心上并与电流继电器串连.正常运行或三相对称短路时,没有零序电流;当单相接地时,有接地电容电流经电缆通过铁心中心孔,在二次侧出现零序电流,而使继电器动作.在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零.当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸.这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流.
三相电路不对称时,电流均可分解正序、负序和零序电流.正序指正常相序的三相交流电(即A、B、C三相空间差120度,相序为正常相序),负序指三相相序与正常相序相反(三相仍差120度,仍平衡),零序指(A、B、C电流分解出来三个大小相同、相位相同的相量.零序电流互感器套在三芯电缆上,三相不平衡时在外部就表现出零序电流(因为相量相同加强)
零序电流互感器为一种线路故障监测器,一般儿只有一个铁芯与二次绕组,使用时,将一次三芯电缆穿过互感器的铁芯窗孔,二次通过引线接至专用的继电器,再由继电器的输出端接到信号装置或报警系统.在正常情况下,一次回路中三相电流基本平衡,其所产生合成磁通也近于零.在互感器的二次绕组中不感生电流,当一次线路中发生单相接地等故障时,一次回路中产生不平衡电流(意即零序电流),在二次绕组中感生微小的电流使继电器动作,发生信号.这个使继电器动作的电流很小(mA级),称作二次电流或零序电流互感器的灵敏度(也可用一次最小动作电流表示),为主要动作指标.
六、正泰电流表选型?
正泰电流表型号有42L6-A
42代表型号代号
LT-电磁系C-磁电系L-整流系D-电动系
6设计序号
AA电流V电压Hz频率cosΦ功率因数kW有功功率kvar无功功率
还有电流表6L2-A,6L2的开孔尺寸是77*77,大点的柜子用开孔尺寸大的,小点的柜子用小的。
七、正序电流如何形成回路?
当两个互相绝缘的电极组成电导池时,若在其中间放置待测溶液,并通以恒压交变电流,就形成了电流回路
八、什么是正序电流保护?
答:正序电流保护:电机在启动过程中或运行过程中发生堵转,将使得电流急剧增大,可能造成电动机烧毁,应装设反应电动机堵转的过程电流保护—正序电流保护。
九、抽水泵正转电流高还是反转电流高?
要看产生的转矩,转矩的阻力,阻力大的电流就大,如果是电机堵转,那么就接近短路。
十、正泰电流互感器怎样标注电流倍率?
这就要看看一次侧穿过有多少“匝数”了。如直接穿过,即为1匝,这时为150/5(30的倍率)。如果穿过2次,即2匝,就是75/5(15倍),同理,3、5、6、10次穿越,分别为:50/5、30/5、25/5、15/5,相应的变比倍率为:10、6、5、3倍。
有些电流互感器一次侧为直接接入式,即一次侧为1匝。谢谢