电阻与电流关系?
一、电阻与电流关系?
用欧姆定律:电压=电流×电阻。
在交流下,电压=电流×阻抗。这里,电压、电流、阻抗都是有相位的。数学上的复数在电工学上用得十分广,电压、电流、阻抗都用复数来计算,比较方便。
公式:I=U除以R,电流单位安,电压单位伏,电阻单位欧。公式:I=U除以R,电流单位安,电压单位伏,电阻单位欧。
二、串联电阻与电流规律?
串联电路中 电阻的规律是 R总=R1+R2+3。
几个电路原件沿着单一路径, 互相连接, 每个节点最多连接两个元件 ,这种连接方式称为串联 。
以串联方式连接的电路称为串联电路。
(br)串联电路中流过每个电阻的电流相等 ,因为直流电路中同一支电路的 各个截面 有相同的电流强度,流过每个电阻的电流相等。
三、串并联电路中电阻与电流之比?
导体两端的电压一定时,导体中的电流和电阻成反比;导体中的电流一定时,导体两端的电压和电阻成正比;串联:电功率与电阻成正比关系;并联:电功率和电阻成反比.
若电源电压不变,
在串联电路中,电流随电阻的增大而减小,
在并联电路中,总电压不随电阻的变化而变化,但支路中若有串联部分,
电阻发生改变的支路的各串联部分电压会改变。
四、串联电路电阻与电流之比怎么求?
串联电路中:电压之比等于电阻之比
电流是相等的
并联电路中:电压是相等的,电流之比等于电阻的反比
串联电路电流:由于串联电路没有分支,所以电路中电流是相同的(就好比水流一样,水量都从一个线路流出时流量都是相同的,但有时候水可以堆积,但是电荷在电路中不能堆积,也不能在流动中自行消失。)。即,不论是电阻大的地方,还是电阻小的地方,电流大小是相等的。
串联电路电压:因为串联电路各段电流是相同的,这样,根据欧姆定律便可得知:在电阻大的那段电路上承受的电压变大,电阻小的那段电路上承受的电压变小。
五、电压一定电阻与电流的关系?
电压一定,电阻跟电流没有关系。正确说法是:电压一定,电流跟电阻成反比。这道题本身问法就是错误的。很多初学欧姆定律时,都会犯这样的错误。
电阻是表示导体对电流阻碍作用大小的物理量。电阻能影响电流。有没有电流,电阻都是客观存在的。电阻是导体本身的一种特性,它是由导体的材料,导体的长度和导体的横截面积决定的。还跟温度有关。但是,导体电阻跟电压和电流都没有关系。
六、串联并联电路电阻与电流之比怎么求?
串联电路中:电压之比等于电阻之比。
电流是相等的。
并联电路中:电压是相等的,电流之比等于电阻的反比。
串联电路电流:由于串联电路没有分支,所以电路中电流是相同的(就好比水流一样,水量都从一个线路流出时流量都是相同的,但有时候水可以堆积,但是电荷在电路中不能堆积,也不能在流动中自行消失。)。即,不论是电阻大的地方,还是电阻小的地方,电流大小是相等的。
七、三相电机的电阻与电流的关系?
阻值的大小与电机型号有关,没有统一的数值。电机功率越小,电机绕组的线径越小,绕组匝数越多,其阻值越大。
三相电机的阻值一般在零点几欧到几欧,功率越大的电机,阻值越小。功率越大,电流越大,导线越粗,所以阻值越小。
测量电机的直流电阻的原因
直流电阻是电机绕组的一个重要参数。与电机绕组的设计方案、所采用电磁线的材质、环境温度等诸多因素有关。
在电机的检查试验和型式试验过程中,直流电阻检测都是一个必须检测的项目;对于规范生产的电机企业,会在电机绕组铁芯浸漆前进行直流电阻检测,这样可以避免不符合要求的产品进入后续生产环节。
测定直流电阻也是电机试验的一项重要内容。通过对实测电阻值的分析,可以初步判定被试电机绕组的匝数、线径、并绕根数、接线方式及接线质量等是否达到要求,以及绕组匝间有无严重的短路故障等。
八、是电阻与电流成反比,还是电流与电阻成反比?二者有区别吗?
是后者,因为决定电阻大小的不是电压和电流,而是其材料、长度、截面积、温度等因素,纯电阻用电器是不会随电流的改变而改变的;而“电阻与电流成反比”说明电阻随电流改变,因此不对。
九、为什么能说电流与电压电阻成正比反比,不能说电压电阻与电流成正比反比?
这个问题涉及到是那个物理量之间哪个决定哪个的问题。电流产生的条件是:导体两端存在电压,也就是电压和电阻决定了电流。因此电流与电压成正比(电阻不变),电流与电阻成反比(电压不变)。
而电压和电阻不是由电流决定的,电阻是导体本身的性质决定,没有电流时电阻也存在。而电压是由电源提供,没有电流电压也可以存在。
十、绝缘电阻,耐过电压,泄露电流?
题主的问题很简练,但内涵还是有的。
在阐述之前,我们先来看一些相关资料。
第一,关于电气间隙与爬电距离
GB7251.1-2013《低压成套开关设备和控制设备 第1部分:总则》中的一段定义,如下:
注意这里在绝缘特性条目下定义了电气间隙和爬电距离。
(1)电气间隙
电气间隙指的是导体之间以及导体与接地体(金属外壳)之间的最短距离。电气间隙与空气介质(或者其它介质)的击穿特性有关。
我们来看下图:
此图就是著名的巴申曲线,是巴申在19世纪末20世纪初提出来的。
巴申曲线的横坐标是电气间隙d与气压p的乘积,纵坐标就是击穿电压。我们看到,曲线有最小值存在。对于空气介质来说,我们发现它的击穿电压最小值大约在0.4kV,而pd值大约在0.4左右。
如果固定大气压强,则我们可以推得击穿电压与电气间隙之间的关系。
我们来看GB7251.1-2013的表1:
我们看到,如果电器的额定冲击耐受电压是2.5kV,则最小电气间隙是1.5毫米。
(2)爬电距离
所谓爬电距离,是指导体之间以及导体与接地体之间,沿着绝缘材料的表面伸展的最短距离。爬电距离与绝缘材料的绝缘特性有关,与绝缘材料的表面污染等级也有关。
我们来看GB7251.1-2013的表2:
注意看,若电器的额定绝缘电压是400V,并且污染等级为III,则爬电距离最小值为5毫米。
第二,关于泄露电流
我们来看下图:
上图的左侧我们看到了由导体、绝缘体和金属骨架接地体(或者外壳)构成的系统,并注意到泄露电流由两部分构成:第一部分是电容电流Ic,第二部分是表面漏电流Ir。表面漏电流是阻性的,而电容电流是容性的,因此它与超前表面漏电流90度。于是,所谓的泄露电流Ia自然就是两者的矢量和了。
注意到两者夹角的正切值被称为介质损耗因数,见上图的右侧,我们能看到电容电流与表面漏电流的关系。
介质损耗因数反映了绝缘介质能量损耗的大小,以及绝缘材料的特性。最重要的是:介质损耗因数与材料的尺寸无关。因此,在工程上常常采用介质损耗因数来衡量绝缘介质的品质。
可见,我们不能仅仅依靠兆欧表的显示值来判断绝缘性能的好坏。
那么绝缘材料的击穿与什么有关?第一是材料的电击穿,第二是材料的气泡击穿。
简单解释材料的气泡击穿:如果绝缘材料内部有气泡,而气泡的击穿电压低于固体材料的击穿电压,因此在绝缘材料的内部会出现局部放电。局部放电的结果会使得绝缘材料从内部发生破坏,并最终被击穿失效。
第三,关于过电压
过电压产生的原因有三种,其一是来自电源的过电压,其二是线路中的感性负荷在切换时产生的过电压,其三是雷击过电压。
对于电器来说,它的额定绝缘电压就是最高使用电压,若在使用中超过额定绝缘电压,就有可能使得电器损坏。
===============
有了上述这些预备知识,我们就可以讨论题主的问题了。
题主的关注点是在家用电器上。
关于国家标准中对家用电器的专业名词解释,可参阅GB/T 2900-29《电工术语 家用和类似用途电器》。
不管是配电电器抑或是家用电器,它们在设计出来上市前,都必须通过型式试验的认证,才能获得生产许可证。因此,型式试验可以说是电器参数权威测试。
不过,要论述这些试验,显然不是这个帖子所能够表达的,这需要几本书。
既然如此,我们不妨看看配电电器型式试验中有关耐压测试和绝缘能力测试的具体要求吧。具体见GB 7251.1-2013《低压开关设备和控制设备 第1部分:总则》。
1)对电气间隙和爬电距离的要求
这两个参数的具体要求如下:
2)对于过电压的要求
其实,电器中绝缘材料的绝缘性能,与电器的温升密切相关。因此在标准中,对温升也提出了要求:
这个帖子到这里应当结束了。
虽然我没有正面回答题主的问题,但从描述中可以看到,题主的问题答案并不简单。建议题主去看专门书籍,会彻底明了其中的道理,以及测试所用的电路图、测试要求和规范。