模电放大电路,以三极管共射放大为例,输入电阻与输出电阻具体指的是什么,它们大小由什么决定,如何计算?
一、模电放大电路,以三极管共射放大为例,输入电阻与输出电阻具体指的是什么,它们大小由什么决定,如何计算?
一般输入、输出电阻可以理解为输入、输出的电压与电流的比,输入电阻可以理解为从输入端看进去的电阻,输出也一样从输出端看进去的电阻。输出电阻好记点就等于Rc基本不会错。输入电阻一般由放大倍数、静态工作点。输入上拉电阻(Rb)都有关系。可以这样算Vbe一般是0.7V左右。Ri=0.7乘以Rb除以Vcc乘以B(放大倍数)
二、共模放大电路?
差分放大电路具有电路对称性的特点,此特点可以起到稳定工作点的作用,被广泛用于直接耦合电路和测量电路的输入级。
差分放大电路有差模和共模两种基本输入信号,由于其电路的对称性,当两输入端所接信号大小相等、极性相反时,称为差模输入信号;当两输入端所接信号大小相等、极性相同时,称为共模信号。 通常我们将要放大的信号作为差模信号进行输入,而将由温度等环境因素对电路产生的影响作为共模信号进行输入,因此我们最终的目的,是要放大差模信号,抑制共模信号。
三、模电电路分析,放大电路输出电压动态范围如何求?
你这个题目给完整了吗?
输出电压在饱和时就是VCES 0.5V
输出电压最大时就是输入信号被截止了,为VCC 12V
输入信号没给定,输出信号的范围就是0.5~12V
四、共模放大电路工作原理?
对于一对信号线A、B,差模干扰相当于在A与B之间加上一个干扰电压,共模干扰相当于分别在A与地、B与地之间加上一个干扰电压;像平常看到的用双绞线传输差分信号就是为了消除共模噪声,原理很简单,两线拧在一起,受到的共模干扰电压很接近, Ua - Ub依然没什么变化,当然这是理想情况。比如,RS422/485总线就是利用差分传输信号的一种具体应用。
五、音频放大模电原理?
声音就是一些声波,转换为一些电信号波,通过运放将其幅度放大,然后再送给扬声器或后级功放。
六、,。。在看电路图中,或者维修电路板时如何区分数电与模电?
就我现在所在的小家电行业简单说一下
正常一个稍微带点智能功能的小家电,只要不是纯机械版本的,内部都带有一块或者多块电路板。整个电路绝大多数分为这么几块:电源电路(模拟电源,就是变压器那种,开关电源,现在一般都是用后者多一些),输入电路(触摸按键,轻触按键,温度传感器,水流传感器等),单片机处理电路,输出(执行)电路(继电器,三极管开关,可控硅,指示灯),执行机构(电气件,如加热棒,电机,点火器等)。
这几个部分,有些是分开的,有些是合在一起的。但即使是在一起,区分起来应该还是不太难的。
如果你硬是要分哪个是模拟电路,哪个是数字电路,这个就有点难了。比如,开关电源可以看成是模拟电路,但它是数字控制的。单片机是数学电路,但也需要模拟电路给滤波,电源,等等。
所以,区分这个没什么必要,当然,基础的知识还是要具备的。
七、单端与双端差模放大电路放大倍数?
双端输入改为单端输入,差模输入信号仍然是用两输入端只差来表示的,所以差动放大电路的差模放大倍数不变。28、双端输出比单端输出大一倍,结合27题知,改为单端输入、单端输出的差模放大倍数应该为500.
八、差分放大电路里共模放大倍数怎么求?
分为两种情况:
1、双端输入双端输出电路:AC=0(由于电路对称,两个三极管集电极输出的共模电压互相抵消,所以共模放大倍数为0)。
2、单端输出电路:由于发射极电阻2RE的负反馈作用下降了,当(β+1)2RE>>RB2+RBE+βRW/2时,则:AC=-βRC/RB2+RBE+0.5βRW+(β+1)2REAC≈-RC/2RE
九、rlc电路属于数电还是模电?
rlc电路输入信号和输出信号从信号的自变量和函数值来看都是连续信号或者模拟信号,所以是模拟电路。
数字电路是处理数字信号的电路,数字信号具有数字特征,它不是以幅度的大小,信号的频率以及相位表示有用信息,而是以编码的方式表示有用的信息。
数字电路如果想处理模拟信号,必须进行模数转换。同样模拟电路想处理数字信号,必须进行数模转换。
十、电路分析与数电模电区别?
电路分析、数电和模电都是电子学的重要分支,但它们之间有一些区别。
1. 电路分析:主要研究各种线性和非线性电路中信号的传输、处理和控制等问题。其基础理论包括欧姆定律、基尔霍夫定律、诺顿定理等,通过这些方法可以对各种复杂的电路进行精确计算和仿真。
2. 数字电子技术(简称数电):主要研究数字信号在逻辑门级别上的处理与转换。其中最常用到的是二进制系统,以及布尔代数中与或非等逻辑运算符。数码管显示器、计算机内部结构设计以及数字通讯协议等都属于该范畴。
3. 模拟电子技术(简称模电):主要研究连续时间下信号在放大器、滤波器等元件中传输过程,并且需要考虑噪声干扰因素对系统稳定性产生影响。例如音频放大器设计,射频收发机设计以及功率变换器设计均属于此类。
总体而言,三者之间存在交叉与联系,在实际应用时也会相互融合使用。