您现在的位置是:主页 > 电压 > 正文

线性光耦lcr0202怎么测量好坏?

电压 2024-09-13 22:04

一、线性光耦lcr0202怎么测量好坏?

用数字万用表的PN结测量端,红表笔“电池+极”接光耦的“1”端,黑表笔“电池-极”接光耦的“2”端(即使光耦的发光二极管正向导通),

用另一电表测量“3”“4”端电阻,断开或接通输入端(发光二极管端),输出端电阻应有大幅度变化,说明改光耦是好的。另发光二极管端万用表可用电池串限流电阻代替。

二、光耦线性度如何?

  普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。线性光耦合器的CTR-IF特性曲线具有良好的线性度,特别是在传输小信号时,其交流电流传输比(ΔCTR=ΔIC/ΔIF)很接近于直流电流传输比CTR值。因此,它适合传输模拟电压或电流信号,能使输出与输入之间呈线性关系。这是其重要特性。  光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。  非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。  线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。  开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:LP632 TLP532 PC614 PC714 PS2031等。常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。

三、光耦如何测量好坏?

1、外观检查

首先,外观检查是评估光耦品质的一项重要步骤。仔细观察光耦的外观,检查是否存在损坏、破裂、腐蚀等问题。如果发现异常情况,可能会影响光耦的性能和寿命。

2、焊点检查

焊点是光耦中连接元件的关键部分。通过检查焊点是否牢固、均匀,可以判断光耦的连接质量。使用显微镜或放大镜来观察焊点,确保其没有裂纹、气泡或焊渣等缺陷。

3、光学特性测量

光学特性是评估光耦品质的重要指标。常见的光学特性包括光耦的传输特性、耦合效率和频响特性等。使用光功率计、光谱仪或示波器等测量设备,可以对光耦的光学性能进行精确测量和分析。

4、绝缘电阻测试

光耦通常需要具备良好的绝缘性能,以防止电气隔离失效和电流泄漏。通过绝缘电阻测试,可以评估光耦的绝缘性能是否符合要求。使用万用表或专用绝缘电阻测试仪,对光耦的绝缘电阻进行测试,并与规格要求进行比较。

5、温度特性测试

温度特性是评估光耦性能稳定性和可靠性的重要参数。光耦在不同温度条件下的性能应该是可控和可预测的。通过在不同温度下对光耦进行测试,可以评估其温度特性和温度稳定性。

6、寿命测试

寿命测试是评估光耦可靠性的重要手段。通过对光耦进行长时间的工作和应力测试,可以模拟实际应用中的使用环境,评估光耦的寿命和可靠性。常见的寿命测试包括热老化测试、振动测试、湿度测试等。这些测试可以帮助确定光耦在长期使用中是否能够保持稳定的性能,并且能够在各种环境条件下正常工作。

7、安全性能测试

光耦在某些领域,如医疗设备或高压电力系统中,需要具备良好的安全性能,以防止电击或火灾等风险。安全性能测试可以评估光耦的耐压能力和电气隔离效果。通过对光耦进行高压测试和绝缘性能测试,可以确保其符合相关安全标准和规定。

四、光耦怎么测量好坏?

方法1:用数字万用表的PN结测量端,红表笔“电池+极”接光耦的“1”端,黑表笔“电池-极”接光耦的“2”端(即使光耦的发光二极管正向导通)。

用另一电表测量“3”“4”端电阻,断开或接通输入端(发光二极管端),输出端电阻应有大幅度变化,说明改光耦是好的。另发光二极管端万用表可用电池串限流电阻代替。 

方法2:光耦PC817的判断方法,先用万用表二极管档检测出光耦的发光端,再在发光端加以五伏左右的电压,判断三极管端好坏。

方法3:将万用表置于R*100OΩ挡,黑表笔接1端红笔接2端,电阻一般为5KΩ-8KΩ,此值为发光二极管的正向电阻,应越小越好,反过来测的反向电阻应越大越好一般为10MΩ以上。

然后黑笔接3端,红笔接4端,阻值应在100KΩ以上,将表笔对调后,反侧的阻值应∞,否则说明光耦器损坏。在开关电源电路中,光耦及附属电路损坏是造成输出电压过高的常见原因。

这样不能证明是好的、还有一步要做的。用2块万用表同时量、让发光管发光、光电管导通才能证明是好的。1--2端可以用一节7号或5号电池待用,注意测试时间不要过长就行了。

扩展资料:

光耦817应用广泛,主要应用于电源设备上,隔离高低电压的用途。相关的终端产品应用包括家电、温控、冷气空调(HVAC)、贩卖机、照明控制装置、充电器与交换式的电源供应器。 电路之间的信号传输,使之前端与负载完全隔离,目的在于增加安全性,减小电路干扰,减化电路设计。

五、光耦最低工作电压?

答;光耦最低工作电压:1,驱动电流一般在2~20mA。

2,对普通光耦来说,一般不提输入电阻。

3,因为光耦的输入端实际上就是一个发光二极管,当给此二极管加上正向3V~24V的直流电压后(当然千万不能忘了串入一只合适的限流电阻),输出端的导通电阻就会从无穷大变到只有几十欧姆。可以这么说,输入端的驱动电流决定输出端的导通电阻。但一般当驱动电流大于5mA后输出端的导通电阻基本上已经达到饱和,所以一般都是根据不同的驱动电压通过调整限流。

六、光耦的工作电压?

光耦p521工作电压是1.2V,工作电流是10mA。2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成。如果T1和T2是同型号同批次的光电耦合器。可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

七、光耦各脚电压?

2V-4V左右,光耦pc817 应用电路 pc817 是常用的线性光藕,在各种要求比较精密的功能电路中...线性光电耦合器 是一种新型的光电隔离器件, 能够传输连续变化的模拟电压或电流..

八、光耦的驱动电压?

光耦最低工作电压:驱动电流一般在2~20mA。

对普通光耦来说,一般不提输入电阻。

因为光耦的输入端实际上就是一个发光二极管,当给此二极管加上正向3V~24V的直流电压后(当然千万不能忘了串入一只合适的限流电阻),输出端的导通电阻就会从无穷大变到只有几十欧姆。可以这么说,输入端的驱动电流决定输出端的导通电阻。

九、光耦输出电压不足?

答:光耦输出电源电压输出不足的原因

1.220V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。 

2.负载电路存在过流引起开关电源负载加重而导致输出电压下降。  

3.开/关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPu电源取自同一个电源, 非副电源提供。  

十、如何判断光耦是线性还是非线性?

光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。 常用的4N系列光耦属于非线性光耦 。  线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。 常用的线性光耦是PC817A—C系列。  开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。 在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。 常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:LP632 TLP532 PC614 PC714 PS2031等。 常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。