为什么集电极上电阻越大越容易饱和?
一、为什么集电极上电阻越大越容易饱和?
集电极电阻越大,同样的电流压降就越大,当电源电压一定时,集电极的电压就越低以就越容易进入饱和
二、NPN三极管饱和时集电极电压是多少?截止时集电极电压是多少?
一般NPN小功率管饱和时集电极电压小于0.5V;大功率NPN管饱和时为1V左右。截止时集电极电压等于电源电压。
三、集电极电阻特点?
它与共发射极放大电路不同,它的输出端是从发射 极引出的,故称为射极输出器。
由于直流电源对于交流信号来说是短路的,所以,对于交流信号而言,晶体管的集电极直接接地。
因 此,由射极输出的电路图可见,该电路的交流信号是从基极和集电极两端输入,而输出信号是从发射极和 集电极间输出,也就是说输入回路和输出回路是以晶体管的集电极为公共端的。
共集电极放大电路的特点是输入电阻高、输出电阻低、电压放大倍数接近于1而小于1,由于具有这 些特点,常被用做多级放大电路的输入级、输出级或作为隔离用的中间级。
利用它作为量测放大器的输入级,可以提高量测的精度并减小对被测电路的影响。
如一个有内阻的待 测电压,这个内阻可能预先不知道、或者经常发生变化。
显然,只要把量测放大器的输入电阻大大提高,保证输入电阻总是比待测电压的内阻大许多倍,那么测得的结果与待测电压基本相等,只有这样,在我们把量测放大器接到被测电路上以后,才不致改变被测电路原来的工作状态。
其次,如果放大器推动的是一个变化的负载,为了在负载变化时保证放大器的输出电压比较稳定,就要求放大器具有很低的输出电阻才行。
这时,用射极输出器作为放大器的输出级。
共集电极放大电路虽然没有电压放大作用,但有电流和功率放大。
共集电极放大电路具有输出电阻小,输出电阻约为几欧到几十欧,比共发射极放大电路的输出电阻要小得多。
输出电阻越小,当负载变化时,输出电压变化也就越小,也就是带负载能力强的原因。 综上所述,共集电极放大电路具有输入电阻大,输出电阻小的特点,在电子电路中得到广泛的作用。
在测量仪表中,常用它作为输入级,主要是它的输入电阻很大,被测电路信号流入的电流很小,对被测电路工作情况影响很小,从而提高了测量的精度。
在多级放大电路中,常用它作为输出级,主要是它的输出电阻小,当负载变化时,输出电压仍很稳定。
有时将共集电极放大电路接在两个共发射极电路的中间,对前级而言,它的高输入电阻可以提高前级的负载电阻,从而提高了前级的电压放大倍数。
对后级而言,它的低输出电阻正好与输入电阻小的共发射极放大电路相配合,这就是射极输出器的阻抗变换作用。
这个中间级又称为隔离级或缓冲级
四、怎么测ce电阻?
用万用表电阻档测量,黑表棒搭三极管c机,红表棒搭e极,正常阻值是无穷大
五、igbt饱和电压?
IGBT饱和电压?IGBT是一种复合器件,它是由一只场效应管和双极性晶体管组合起来的大功率器件,既保留了场效应管驱动功率小又保留了双极性晶体管导通压降低的优点,IGBT到同时和一般的双极星大功率晶体管的压降差不多,他的导通压降大约在零点几伏左右。
六、绝缘电阻,耐过电压,泄露电流?
题主的问题很简练,但内涵还是有的。
在阐述之前,我们先来看一些相关资料。
第一,关于电气间隙与爬电距离
GB7251.1-2013《低压成套开关设备和控制设备 第1部分:总则》中的一段定义,如下:
注意这里在绝缘特性条目下定义了电气间隙和爬电距离。
(1)电气间隙
电气间隙指的是导体之间以及导体与接地体(金属外壳)之间的最短距离。电气间隙与空气介质(或者其它介质)的击穿特性有关。
我们来看下图:
此图就是著名的巴申曲线,是巴申在19世纪末20世纪初提出来的。
巴申曲线的横坐标是电气间隙d与气压p的乘积,纵坐标就是击穿电压。我们看到,曲线有最小值存在。对于空气介质来说,我们发现它的击穿电压最小值大约在0.4kV,而pd值大约在0.4左右。
如果固定大气压强,则我们可以推得击穿电压与电气间隙之间的关系。
我们来看GB7251.1-2013的表1:
我们看到,如果电器的额定冲击耐受电压是2.5kV,则最小电气间隙是1.5毫米。
(2)爬电距离
所谓爬电距离,是指导体之间以及导体与接地体之间,沿着绝缘材料的表面伸展的最短距离。爬电距离与绝缘材料的绝缘特性有关,与绝缘材料的表面污染等级也有关。
我们来看GB7251.1-2013的表2:
注意看,若电器的额定绝缘电压是400V,并且污染等级为III,则爬电距离最小值为5毫米。
第二,关于泄露电流
我们来看下图:
上图的左侧我们看到了由导体、绝缘体和金属骨架接地体(或者外壳)构成的系统,并注意到泄露电流由两部分构成:第一部分是电容电流Ic,第二部分是表面漏电流Ir。表面漏电流是阻性的,而电容电流是容性的,因此它与超前表面漏电流90度。于是,所谓的泄露电流Ia自然就是两者的矢量和了。
注意到两者夹角的正切值被称为介质损耗因数,见上图的右侧,我们能看到电容电流与表面漏电流的关系。
介质损耗因数反映了绝缘介质能量损耗的大小,以及绝缘材料的特性。最重要的是:介质损耗因数与材料的尺寸无关。因此,在工程上常常采用介质损耗因数来衡量绝缘介质的品质。
可见,我们不能仅仅依靠兆欧表的显示值来判断绝缘性能的好坏。
那么绝缘材料的击穿与什么有关?第一是材料的电击穿,第二是材料的气泡击穿。
简单解释材料的气泡击穿:如果绝缘材料内部有气泡,而气泡的击穿电压低于固体材料的击穿电压,因此在绝缘材料的内部会出现局部放电。局部放电的结果会使得绝缘材料从内部发生破坏,并最终被击穿失效。
第三,关于过电压
过电压产生的原因有三种,其一是来自电源的过电压,其二是线路中的感性负荷在切换时产生的过电压,其三是雷击过电压。
对于电器来说,它的额定绝缘电压就是最高使用电压,若在使用中超过额定绝缘电压,就有可能使得电器损坏。
===============
有了上述这些预备知识,我们就可以讨论题主的问题了。
题主的关注点是在家用电器上。
关于国家标准中对家用电器的专业名词解释,可参阅GB/T 2900-29《电工术语 家用和类似用途电器》。
不管是配电电器抑或是家用电器,它们在设计出来上市前,都必须通过型式试验的认证,才能获得生产许可证。因此,型式试验可以说是电器参数权威测试。
不过,要论述这些试验,显然不是这个帖子所能够表达的,这需要几本书。
既然如此,我们不妨看看配电电器型式试验中有关耐压测试和绝缘能力测试的具体要求吧。具体见GB 7251.1-2013《低压开关设备和控制设备 第1部分:总则》。
1)对电气间隙和爬电距离的要求
这两个参数的具体要求如下:
2)对于过电压的要求
其实,电器中绝缘材料的绝缘性能,与电器的温升密切相关。因此在标准中,对温升也提出了要求:
这个帖子到这里应当结束了。
虽然我没有正面回答题主的问题,但从描述中可以看到,题主的问题答案并不简单。建议题主去看专门书籍,会彻底明了其中的道理,以及测试所用的电路图、测试要求和规范。
七、电压电阻物理教学反思
电压、电阻是物理教学中的两个重要概念,对于学生来说,理解这些概念的内涵以及应用方法是学习物理学的基础。然而,在实际教学过程中,我们常常会面临一系列的挑战和问题,这使得我们不得不对物理教学进行反思和改进。
电压的概念和教学
电压是指电荷在电路中移动所具有的能量。在教学中,我们通常会引入一些实际的例子来帮助学生理解电压的概念。例如,让学生想象水流通过管道的情景,电压就相当于水流的压力,而导线则相当于管道。这样的比喻能够帮助学生建立起对电压的直观理解。
然而,我们也需要注意到一些学生可能存在的困惑和误解。学生常常会将电压与电流混淆,认为二者是同一概念。因此,在教学过程中,我们应该强调电压与电流之间的区别和联系。同时,为了帮助学生更好地理解电压的作用,我们可以设计一些实验来展示电压对电路中电流的影响。
电阻的概念和教学
电阻是指电路中阻碍电流流动的物理量。在教学中,我们可以通过实际的电路图和电阻器来引入电阻的概念。将电阻与水管中的阻力进行类比,可以帮助学生形象地理解电阻的作用。
然而,对于一些学生来说,电阻的概念可能仍然比较抽象。在教学过程中,我们需要通过丰富的实例以及实验来加深学生对电阻的理解。例如,可以设计一个实验,测量不同电阻值的电阻器在电路中的作用,从而让学生亲自体验电阻对电流的调控。
物理教学的反思
在教学过程中,我们经常会面临一些困惑和挑战,需要对自己的教学方法进行反思和改进。首先,我们需要关注学生的学习需求和特点,因为每个学生都有自己的学习风格和能力水平。因此,我们需要采用多样化的教学方法,例如以问题为导向的教学、小组合作学习等,以满足不同学生的需求。
其次,我们需要关注学生的学习动机和兴趣。培养学生对物理学的兴趣是一个长期的过程,我们可以通过设计生动有趣的实验、举办科学竞赛等方式来激发学生的学习兴趣。
此外,我们还应该注重培养学生的实践能力。物理学是一门实践性很强的学科,通过实践能够帮助学生更好地理解和应用所学知识。因此,在教学过程中,我们应该多安排实验课,让学生亲自动手操作,提高他们的实践能力。
结语
电压、电阻是物理教学中的重要内容,对于学生的物理学习起着关键的作用。为了更好地教授这些概念,我们需要注重教学方法的反思与改进,关注学生的学习需求和兴趣,培养学生的实践能力。只有在不断改进和创新的基础上,我们才能够提高学生的学习效果,让他们更好地掌握电压、电阻等物理概念。
八、饱和电压是什么?
饱和电压(Saturation voltage),以硅二极管为例,它的饱和电压就大概在0.7V左右,当二极管两端加上顺向电压时(可以用电源供应器串接一个电阻),就会产生电流,在二极管的两端就会有电压差,当这个电流由小变大时,电压差也会逐渐变大,但大到接近饱和电压以后,电压差就不再明显的随电流上升而上升,这时,这个电压差就是二极管的饱和电压。
九、npn型三极管工作于饱和区为啥集电极明明有电压?
npn三极管饱和导通时,基极电压测出高于集电极电压。这就是大电流连续导通使集电极原电势快速拉低的缘故,而基极电流几乎不变,那也当然保持原高电势啦。
一般NPN小功率管饱和时集电极电压小于0.5V;大功率NPN管饱和时为1V左右。截止时集电极电压等于电源电压。
十、dp电压和ce电压指什么?
DP电压即Declustering Potential,通常我们称之为去蔟电压或接蔟电压,其字面含义就是将聚成团或簇的分子、离子驱散开,该电压是设置在离子源内部喷针头上,这样更适合分子电离成离子,减少分子聚团或聚簇对离子化产生的影响,主要是影响离子进入质谱的速度。锥孔电压高,离子速度快,离子损失小,检测灵敏度高。反之则相反。
CE电压即Collision Energy,通常我们称之为裂解电压或碎裂电压,其字面含义就是将带电离子施加电压,使易脱落的结构掉落,属于质谱的二级碰撞池里的碰撞电压了,这是为了使母离子经碰撞产生最优的子离子而设的参数,一般某个碎裂电压可产生多个碎片离子,而产生多个碎片离子的原因可能是相同母离子数的离子太多,造成对我们目标物定性及定量的干扰。
推荐阅读